Row Modifications of a Sparse Cholesky Factorization

نویسندگان

  • Timothy A. Davis
  • William W. Hager
چکیده

Given a sparse, symmetric positive definite matrix C and an associated sparse Cholesky factorization LDL, we develop sparse techniques for updating the factorization after a symmetric modification of a row and column of C. We show how the modification in the Cholesky factorization associated with this rank-2 modification of C can be computed efficiently using a sparse rank-1 technique developed in an earlier paper [SIAM J. Matrix Anal. Appl., 20 (1999), pp. 606-627]. We also determine how the solution of a linear system Lx = b changes after changing a row and column of C or after a rank-r change in C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithm 8xx: a concise sparse Cholesky factorization package

The LDL software package is a set of short, concise routines for factorizing symmetric positive-definite sparse matrices, with some applicability to symmetric indefinite matrices. Its primary purpose is to illustrate much of the basic theory of sparse matrix algorithms in as concise a code as possible, including an elegant method of sparse symmetric factorization that computes the factorization...

متن کامل

Exact Prediction of QR Fill-In by Row-Merge Trees

Row-merge trees for forming the QR factorization of a sparse matrix A are closely related to elimination trees for the Cholesky factorization of ATA. Row-merge trees predict the exact fill-in (assuming no numerical cancellation) provided A satisfies the strong Hall property, but over-estimates the fill-in in general. However, here a fast and simple post-processing step for rowmerge trees is pre...

متن کامل

Reprocessing a Postprocessed Elimination Tree to Obtain Exact Sparsity Prediction in Qr Factorization

Row-merge trees for forming the QR factorization of a sparse matrix A are closely related to elimination trees for the Cholesky factorization of ATA. Row-merge trees predict the exact fill-in (assuming no numerical cancellation) provided A satisfies the strong Hall property, but over-estimates the fill-in in general. However, here a fast and simple post-processing step for rowmerge trees is pre...

متن کامل

On Evaluating Parallel Sparse Cholesky Factorizations

Though many parallel implementations of sparse Cholesky factorization with the experimental results accompanied have been proposed, it seems hard to evaluate the performance of these factorization methods theoretically because of the irregular structure of sparse matrices. This paper is an attempt to such research. On the basis of the criteria of parallel computation and communication time, we ...

متن کامل

Multiple-Rank Modifications of a Sparse Cholesky Factorization

Given a sparse symmetric positive definite matrix AAT and an associated sparse Cholesky factorization LDLT or LLT, we develop sparse techniques for updating the factorization after either adding a collection of columns to A or deleting a collection of columns from A. Our techniques are based on an analysis and manipulation of the underlying graph structure, using the framework developed in an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005